Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes.
نویسندگان
چکیده
Quantum dot (QD) nanoparticles have potential applications in nanomedicine as drug delivery vectors and diagnostic agents, but the skin toxicity and irritation potential of QDs are unknown. Human epidermal keratinocytes (HEKs) were used to assess if QDs with different surface coatings would cause differential effects on HEK cytotoxicity, proinflammatory cytokine release, and cellular uptake. Commercially available QDs of two different sizes, QD 565 and QD 655, with neutral (polyethylene glycol (PEG)), cationic (PEG-amine), or anionic (carboxylic acid) coatings were utilized. Live cell imaging and transmission electron microscopy were used to determine that all QDs localized intracellularly by 24 hours, with evidence of QD localization in the nucleus. Cytotoxicity and release of the proinflammatory cytokines IL-1beta, IL-6, IL-8, IL-10, and tumor necrosis factor-alpha were assessed at 24 and 48 hours. Cytotoxicity was observed for QD 565 and QD 655 coated with carboxylic acids or PEG-amine by 48 hours, with little cytotoxicity observed for PEG-coated QDs. Only carboxylic acid-coated QDs significantly increased release of IL-1beta, IL-6, and IL-8. These data indicate that QD surface coating is a primary determinant of cytotoxicity and immunotoxicity in HEKs, which is consistent across size. However, uptake of QDs by HEKs is independent of surface coating.
منابع مشابه
In vitro cytotoxicity of CdSe/ZnS quantum dots with different surface coatings to human keratinocytes HaCaT cells.
Quantum dots (QD) nanoparticles have been widely used in biomedical and electronics fields, because of their novel optical properties. Consequently it confers enormous potential for human exposure and environmental release. To increase the biocompatibility of QDs, a variety of surface coatings or functional groups are added to increase their bioactivity and water solubility. Human adult low cal...
متن کاملpH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation
In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...
متن کاملNanotoxicity for E. Coli and Characterization of Silver Quantum Dots Produced by Biosynthesis with Eichhornia crassipes
Nanomaterials are widely used in health and biomedical applications, however, only a few studies investigate their toxic effects. The present report signifies a contribution to the study of the toxic effects of silver nanoparticles on E. coli cells, which is a model organism of anthropogenic pollution. The toxicity of nanoparticles depends on their chemical and surface properties, shape and ...
متن کاملQuantum current modeling in nano-transistors with a quantum dot
Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of investigative dermatology
دوره 127 1 شماره
صفحات -
تاریخ انتشار 2007